On class number formula for the real quadratic fields

نویسندگان

چکیده

منابع مشابه

On a Class Number Formula for Real Quadratic Number Fields

For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.

متن کامل

The Dirichlet Class Number Formula for Imaginary Quadratic Fields

because 2, 3, and 1± √ −5 are irreducible and nonassociate. These notes present a formula that in some sense measures the extent to which unique factorization fails in environments such as Z[ √ −5]. Algebra lets us define a group that measures the failure, geometry shows that the group is finite, and analysis yields the formula for its order. To move forward through the main storyline without b...

متن کامل

The Dirichlet Class Number Formula for Imaginary Quadratic Fields

Z[ √ −5] = {a+ b √ −5 : a, b ∈ Z}, because 2, 3, and 1± √ −5 are irreducible and nonassociate. These notes present a formula that in some sense measures the extent to which unique factorization fails in environments such as Z[ √ −5]. Algebra lets us define a group that measures the failure, geometry shows that the group is finite, and analysis yields the formula for its order. To move forward t...

متن کامل

The Dirichlet Class Number Formula for Imaginary Quadratic Fields

Z[ √ −5] = {a+ b √ −5 : a, b ∈ Z}, because 2, 3, and 1± √ −5 are irreducible and nonassociate. These notes present a formula that in some sense measures the extent to which unique factorization fails in environments such as Z[ √ −5]. The large-scale methodology deserves immediate note, before the reader is immersed in a long succession of smaller attention-filling specifics: • algebra lets us d...

متن کامل

The Dirichlet Class Number Formula for Imaginary Quadratic Fields

Z[ √ −5] = {a+ b √ −5 : a, b ∈ Z}, because 2, 3, and 1± √ −5 are irreducible and nonassociate. These notes present a formula that in some sense measures the extent to which unique factorization fails in environments such as Z[ √ −5]. Algebra lets us define a group that measures the failure, geometry shows that the group is finite, and analysis yields the formula for its order. To move forward t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 2004

ISSN: 0386-2194

DOI: 10.3792/pjaa.80.129